

FONCTIONNEMENT D’UN SYSTÈME À BASE DE RÈGLES1
Par Lucien Roy

SOMMAIRE

Introduction .. 1
1. Émergence des systèmes à base de connaissances .. 1
2. Structure d’un système à base de règles .. 4

2.1 Schéma fonctionnel.. 4
2.2 Fonctions de chaque composante .. 5

3. Modes d’opération d’un système à base de règles .. 7
4. Logique de fonctionnement du moteur d’inférence... 10

4.1 Navigation dans un réseau ... 11
4.2 Aperçu du fonctionnement d’un moteur d’inférence .. 13
4.3 Chaînage avant... 16
4.4 Chaînage arrière .. 18

4.5 Variantes des mécanismes d’inférence de base .. 21
Chaînage mixte .. 21
Recherche en largeur ou en profondeur .. 21

5. Évaluation des mécanismes .. 22
5.1 Observations sur le fonctionnement d’un moteur d’inférence .. 22
5.2 Comparaison et synthèse des méthodes d’inférence ... 24

6. Optimisation de la performance d’un moteur d’inférence .. 25
6.1 Structuration des connaissances dans une base de règles .. 25
6.2 Priorités d’application des règles .. 27
6.3 Métarègles ... 27
6.4 Heuristiques ... 28

7. Traitement des connaissances incertaines ... 28
Conclusion .. 31
À retenir .. 32

1 Ce texte est extrait en majeure partie du volume G.Paquette et L. Roy, « Systèmes à base de
connaissances, Télé-université et Beauchemin, pp.121-174

1

Introduction
Après avoir vu différentes formes de représentations des connaissances, nous allons
maintenant examiner les outils informatiques susceptibles d’implanter ces connaissances en
vue de les exploiter. C’est pourquoi nous passons à l’étude d’un environnement qui supporte
une représentation particulière : les systèmes à base de règles.

Nous avons choisi les systèmes à base de règles (SBR) pour trois raisons. Premièrement, ce
sont les systèmes à base de connaissances les plus répandus dans les applications.
Deuxièmement, les représentations à base de règles mènent à une codification des
connaissances en des termes assez simples, les règles si... alors... Il s’agit d’une façon
d’exprimer les connaissances qui nous est familière. De plus, les SBR offrent des éditeurs de
règles qui facilitent la codification des connaissances d’une application. Finalement, la
troisième raison de notre choix est pédagogique. Nous tenons à exploiter deux fonctionnalités
originales des SBR, soit la présence de mécanismes de raisonnement transparents et
l’existence d’un module d’explication de leur fonctionnement. Cela nous donne accès aux
mécanismes d’inférence et à la manière dont des conclusions peuvent être déduites par un
programme.

Nous situons d’abord les SBR dans l’évolution générale des divers types de logiciels. La
manière d’opérer un SBR sera ensuite abordée par l’étude des interfaces avec leurs usagers.
Nous accordons aussi une attention particulière au fonctionnement du module qui fait
l’originalité des SBR, le moteur d’inférence. Puis nous présentons des algorithmes d’inférence
par chaînage avant et par chaînage arrière· qui sont accompagnés de simulations avec des
exemples bases de règles. Enfin, nous procédons par analogie et par raffinement graduel
dans l’explication des mécanismes d’inférence. C’est ce qui nous permet de découvrir
quelques méthodes d’optimisation pour améliorer leur performance lorsqu’un grand nombre
de règles devient nécessaire.

1. Émergence des systèmes à base de connaissances
Les systèmes à base de connaissances forment une famille de logiciels au même titre que les
langages de programmation et les systèmes de gestion de bases de données (SGBD).
Qu’est-ce qui distingue les SBC des autres familles de logiciels? La genèse des SBC fournit
une réponse éclairante à cette question. En effet, l’étude de l’évolution des logiciels de
l’informatique nous montre que données et traitements ont été progressivement dissociés
physiquement, puis logiquement. La figure 1 résume cette évolution.

Revenons d’abord aux programmes écrits en langage de base (langage machine ou
assembleur), le seul type de langage disponible au début de l’informatique. À cette époque,
les programmeurs avaient une très grande marge de manœuvre dans l’utilisation de la
mémoire centrale de l’ordinateur. Ils n’étaient pas tenus de définir deux zones distinctes de
mémoire, une pour les données et une autre pour les instructions.

La situation change radicalement avec l’apparition de langages évolués comme le FORTRAN
ou le COBOL, où données et instructions (traitements) occupent des zones séparées de la
mémoire. Si la séparation physique est ainsi accomplie, la séparation logique ne l’est pas
encore. En effet, les instructions, une fois traduites en langage machine par le compilateur,
supposent que les données sont invariables quant à leur emplacement en mémoire et à leur
structure. Ce fait est particulièrement gênant pour les zones tampons qui servent aux
échanges avec les fichiers. Ainsi, la structure des enregistrements d’un fichier ne peut être
changée sans révision et recompilation de tous les programmes y accédant.

2

Un pas très important est franchi avec les systèmes de gestion de bases de données (SGBD).
On extrait des programmes la définition des enregistrements pour la placer au début du
fichier, dans une sorte d’en-tête (header). Les programmes sont alors dotés, sans intervention
du programmeur, d’une couche additionnelle de code pour aller chercher, à cet endroit,
l’information qui décrit l’organisation des données dans le fichier. Ainsi, les traitements sont
codés dans des programmes, alors que les données et leur organisation (la structure) sont
entreposées dans une base de données.

Figure 1 Séparation progressive des données et des programmes.

3

Avec la mise au point des systèmes à base de connaissances, on généralise la notion de
données. On parvient à intégrer aux données des structures de contrôle comme des
décisions. En effet, on emmagasine les données, leur organisation et les règles de traitement
dans une base de connaissances. Les traitements décrits sous forme de règles sont des
données pour les mécanismes d’inférence appliqués aux connaissances. La figure 1 illustre
cette évolution d’indépendance des données par rapport aux programmes. Il en résulte une
possibilité intéressante : on peut modifier le contenu d’une base de connaissances et donc, la
logique d’un programme sans être obligé de modifier les programmes qui l’exploitent. Le
même moteur d’inférence sert à plusieurs bases de connaissances sur des sujets
possiblement très différents. Ces possibilités confèrent une souplesse indéniable aux SBC.
Cette circonstance fait que le développement d’une application avec un SBC passe d’abord
par l’analyse des connaissances à traiter. C’est l’étape cruciale de la représentation des
connaissances, objet d’étude d’un texte précédent.

Voyons maintenant comment on peut traduire concrètement la séparation des données et des
programmes avec deux outils informatiques distincts. Supposons que l’on désire calculer le
montant d’impôt qu’un contribuable doit payer en tenant compte de son état civil, de son
revenu brut et d’une table d’imposition basée sur le revenu imposable. Avec un langage
procédural évolué comme le Pascal, une solution à notre problème pourrait ressembler à
celle-ci :

PROCEDURE CALCULER_IMPOT;
BEGIN
READLN (état_civil, revenu_brut); (*Lecture des données*)
IF état_civil = "marié" THEN (*Calcul de l’exemption*)
 Exemption = 11000 (*selon l’état civil*)
 ELSE
 Exemption = 6000;
revenue_imposable : = revenu_brut – exemption;
IF revenue_imposable < = 15000 THEN (*Calcul de l’impôt selon*)
 impôt : = revenu_imposable*0.08 (*le revenu imposable*)
 ELSE
 impôt : = 1200 + (revenu_imposable – 15000) * 0.12)
END;

Voici la même solution traduite en règles que l’on pourrait incorporer à une base de règles :

Si paramètre_impôt inconnu
Alors obtenir état civil Et obtenir revenu brut

Si état civil est marié
Alors exemption = 11 000

Si état civil est non marié
Alors exemption = 6 000

Si revenu_imposable inconnu
Alors calculer_revenu_imposable
Si revenu_imposable <= 15 000

4

Alors impôt = revenu_imposable* 0,08
Si revenu_imposable > 15 000
Alors impôt = 1 200 + (revenu_imposable – 15 000) * 0,12

Bien que ces deux solutions soient équivalentes, elles présentent une différence très
importante. Certains éléments du programme Pascal comme les branchements conditionnels
if.... then... sont incorporés à la base de règles et sorties du programme. C’est ainsi que des
règles de traitement qui font partie d’un programme deviennent des données pour le moteur
d’inférence d’un système à base de règles.

2. Structure d’un système à base de règles
Nous procédons à l’analyse d’un système à base de règles afin d’en identifier les
composantes, de montrer comment elles sont agencées et forment un ensemble opérationnel.

2.1 Schéma fonctionnel
Toutes les parties d’un système à base de connaissances doivent travailler en collaboration
pour que l’objectif de l’ensemble soit atteint. De ce point de vue, on peut définir la finalité d’un
SBC comme étant la possibilité de remplacer un expert d’un domaine bien identifié. Pour y
parvenir, un SBC doit supporter des fonctionnalités qui le rendent capable d’acquérir du
savoir-faire et de répondre aux besoins de ses usagers. Or, l’expertise se manifeste
principalement par l’accumulation de connaissances, la capacité d’utiliser ces connaissances
pour résoudre des problèmes et la faculté d’expliquer la manière d’exploiter ces
connaissances.

On s’est beaucoup inspiré de ces remarques pour concevoir l’architecture d’un système à
base de règles. Ses deux éléments essentiels sont une base de règles et un mécanisme de
raisonnement appelé moteur d’inférence.

On a conçu un système à base de connaissances comme une machine à qui l’on transmet les
connaissances d’un expert sur un sujet donné, en vue de solutionner des problèmes que lui
soumettent des usagers. Enfin, sa configuration est déterminée par les conditions d’opération
suivantes :

• D’abord, on doit construire une base de règles.
• Ensuite, le SBR dialogue avec l’usager en utilisant la base de connaissances et en

gardant une trace des déductions (inférences) effectuées.
• Puis, le moteur d’inférence traite les règles pour effectuer les déductions.

La figure 2 illustre la configuration générale d’un SBR et montre le rôle d’un SBR dans les
étapes d’opération d’un système de traitement de l’information. On peut suivre le parcours
des connaissances qui sont d’abord analysées et fournies par les experts et les cogniticiens2
au SBC qui les traite en vue de répondre aux besoins des usagers. On voit que les parties
essentielles d’un système à base de connaissances sont :

• les données : une base de connaissances et une base de faits,

2 Expert et cogniticien sont des termes génériques. « Expert » désigne une personne qui possède

une connaissance approfondie d’un domaine du savoir. « Cogniticien » désigne une personne
spécialisée dans des méthodes d’acquisition et de représentation des connaissances permettant de
construire une base de connaissances.

5

• les programmes :le moteur d’inférence (MI) et les deux interfaces pour introduire les
connaissances dans la base et fournir à l’usager des déductions du MI ou des explications
sur son raisonnement.

Figure 2 Architecture d’un système à base de règles.

On appelle coquille ou système essentiel l’ensemble des programmes formés par le moteur
d’inférence et les interfaces usager et expert. On se procure une coquille vide pour construire
et exploiter diverses bases de connaissances afin de répondre à des problèmes posés par
des usagers. Une telle approche nous permet de centrer notre attention sur la déclaration des
connaissances à traiter et sur le dialogue avec l’usager. Cela change complètement
l’approche du développement d’applications informatiques. On doit se concentrer sur
l’identification, l’acquisition et la représentation des connaissances.

2.2 Fonctions de chaque composante
Les connaissances et les faits

Un système à base de règles traite, d’abord, le savoir d’un domaine applicable à plusieurs
problèmes : les connaissances; puis, les données particulières qui caractérisent chaque
problème posé au SBR : les faits. Cette distinction présente une analogie avec le modèle
humain de traitement de l’information décrit dans le texte 2. En effet, les connaissances sont
stockées dans la base de règles, sorte de mémoire à long terme d’un SBR. D’autre part, les
faits sont conservés dans la base de faits qui tient lieu de mémoire à court terme.

La base de règles
C’est l’endroit où sont stockées les données d’un SBR. Le contenu de la base de règles est
une représentation du savoir d’un domaine d’application. Le fonctionnement du SBR est
centré sur cette base et la richesse de son contenu en détermine la performance. On doit

6

créer une base de règles initiales à l’aide de l’interface expert. Le moteur d’inférence en
récupère le contenu lors de l’opération selon les inférences qu’il doit effectuer.

La mémoire de travail
C’est une zone de mémoire qui sert de tampon au MI. Il y conserve une trace de ses
déductions, des buts intermédiaires qu’il se fixe lors de la recherche d’une solution et des
règles utilisées. Toutes les déductions effectuées par le moteur d’inférence et les réponses
fournies par l’usager sont conservées dans la base de faits. Son contenu est géré par le
moteur d’inférence et est initialisé de nouveau au début de chaque séance d’interrogation du
SBC. L’usager peut initialiser ou interroger le contenu de la mémoire de travail au moyen de
l’interface usager. Mais l’essentiel de son contenu constitue la trace des raisonnements
effectués par le moteur d’inférence. À cet effet, la mémoire de travail contient les données
suivantes :

• les conclusions déduites à partir de faits considérés vrais par hypothèse,
• les conditions à vérifier pour qu’une conclusion se réalise,
• les règles appliquées ou les messages échangés afin de satisfaire la requête de l’usager.

La base de faits contient les données spécifiques à une séance de travail avec le SBR. Elle
occupe une partie de la mémoire de travail ou bien elle est entreposée sur fichier magnétique.
On l’appelle aussi base de faits expérimentaux. Les faits sont des connaissances factuelles
généralement exprimées sous forme de propositions simples.

Un système à base de connaissances conserve une trace des opérations qu’il effectue en
empilant les conclusions, les conditions et les règles impliquées dans son processus
d’inférence. La structure de pile permet au SBR de retrouver les déductions effectuées et la
façon dont ces déductions furent obtenues. C’est de cette manière qu’un SBC peut expliquer
son fonctionnement. Voilà une originalité qu’aucun logiciel classique ne peut offrir.

Le moteur d’inférence (Ml)

Il s’agit d’un programme spécifique aux SBR : il fait des déductions en exploitant une base de
connaissances et des réponses fournies par l’usager. Sa généralité est telle qu’il peut déduire
des faits dans plusieurs contextes, puisqu’il traite des connaissances de plusieurs sujets
différents. En effet, le moteur d’inférence peut exploiter plusieurs bases de connaissances,
une pour chaque contexte d’application. Le MI est le cœur d’un système à base de
connaissances et a trois fonctions :

• Prendre connaissance des requêtes de l’usager entreposées dans la base de faits.
• Répondre aux questions de l’usager : il sélectionne et applique les règles appropriées

contenues dans la base de connaissances. C’est ce qui lui permet de déduire des
résultats de son raisonnement.

• Générer une trace de ses actions qu’il conserve dans la base de faits.

Les moteurs d’inférence appliquent des règles en suivant des variantes des deux modes de
raisonnement suivants :

• en chaînage avant : en partant de faits considérés vrais par hypothèse, il en déduit les
conclusions possibles,

7

• en chaînage arrière : en partant d’une conclusion à démontrer, il découvre les conditions
qui doivent être réalisées pour que la conclusion soit vérifiée.

Les interfaces

Les interfaces sont des modules programmés qui tiennent lieu d’unité d’entrée et d’unité de
sortie d’un système à base de connaissances. Elles permettent l’interaction avec les deux
types d’opérateurs d’un SBR : d’une part, les experts et les cogniticiens qui construisent la
base de connaissances et, d’autre part, les usagers qui ont recours aux services du SBR.

L’interface expert
C’est par l’intermédiaire de l’interface expert que l’on peut transmettre à un SBR les
connaissances requises à la solution de problèmes dans un domaine d’application. On y
parvient en éditant une base de règles. En général, l’interface expert comporte les modules
suivants :

• un éditeur de règles pour initialiser ou modifier le contenu de la base,
• un éditeur de dialogue avec l’usager permettant aux experts de prévoir les questions que

le SBR devra poser à l’usager pour le guider dans sa recherche de solution,
• un analyseur ou un compilateur de base pour traduire les connaissances des experts en

structures de données reconnues par le moteur d’inférence.

En général, l’interface expert sert de lien entre les experts, les cogniticiens et la base de
connaissances. Mais elle peut également transposer en règles des données factuelles
entreposées dans une base de. données ou dans un chiffrier. C’est une des manifestations de
l’ouverture des SBR sur d’autres outils informatiques.

L’interface usager
• L’interface usager assure la communication entre l’usager et le SBR. Il s’agit d’un module

subordonné au moteur d’inférence. Le module pose des questions à l’usager, au besoin,
et recueille les réponses de ce dernier pour les transmettre au moteur d’inférence. La
convivialité de cette interface varie selon le prix du système. Actuellement, on essaie de
concevoir des interfaces graphiques ou des interfaces qui reconnaîtraient des requêtes en
langue naturelle, pour permettre une plus large diffusion des SBR.

• L’interface usager est composée de deux modules : un module de dialogue avec le SBR
et un module d’explication par lequel le moteur d’inférence explique comment il utilise le
contenu de la base de connaissances pour répondre aux questions de l’usager. Il
récupère les données empilées par le moteur d’inférence pour restituer la trace du
raisonnement effectué.

3. Modes d’opération d’un système à base de règles
Le dialogue entre un usager et un système base de règles peut nous aider à comprendre son
fonctionnement. À ce propos, voici un extrait d’une « conversation » avec la coquille M.l qui
accède à la base de Conseiller en vins. Il s’agit d’un petit système expert qui fournit des
suggestions de vins pour accompagner un repas. On veut se servir de la base Conseiller en
vins pour déterminer quel vin serait le plus approprié à un bœuf Strogonoff. Les réponses de
l’usager sont précédées du symbole « > » et sont en italique.

8

Le plat principal contient-il de la viande, du poisson ou de la volaille?
> viande
Est-ce qu’il y a du veau dans le repas?
> non
Une sauce accompagne-t-elle le repas?
> pourquoi?

Votre réponse va aider à déterminer si la règle suivante
s’applique :
Si le principal ingrédient n’est pas du poisson ET

il y a de la sauce ET
la sauce est aux tomates

Alors la couleur du vin recommandée est rouge
Une sauce accompagne-t-elle le repas?
> oui
Est-ce que la sauce est épicée, douce, crémeuse ou aux tomates?
> crémeuse
Préférez-vous généralement les vins rouges ou blancs?
> rouge
Le repas est à saveur délicate, moyenne ou forte?
> je ne sais pas
Préférez-vous généralement les vins légers, moyens ou corsés?
> légers
Préférez-vous généralement les vins secs, moyens ou sucrés?
> secs
Voici mes conclusions :

Barolo (80 %)
Cabernet-Sauvignon (80 %)
Bourgogne (60 %)

> fin

Comme toutes les coquilles de SBR, M.l peut expliquer son fonctionnement. C’est ainsi qu’à
la question pourquoi?, il identifie la règle qu’il s’apprête à appliquer. Par ailleurs, il peut
continuer son cheminement même lorsque l’usager ignore la réponse à une question comme
en témoigne le je ne sais pas.

L’exemple précédent montre que l’on peut dialoguer avec un SBR. En général, on peut opérer
un SBR selon l’un des deux modes suivants :

• Acquisition des connaissances permettant d’éditer le contenu d’une base de
connaissances; l’interface expert est alors utilisée.

• Dialogue avec le SBR qui exploite une base de règles et exécute un mécanisme
d’inférence pour déduire des conclusions; l’interface usager se charge de communiquer
les conclusions à l’usager et de fournir des explications sur la manière dont s’effectue le
raisonnement.

9

L’acquisition des connaissances est l’étape préalable à l’utilisation d’un SBR. Elle consiste à
l’instruire par construction d’une base de règles. Cette étape fait intervenir l’interface expert.

Une fois la base de connaissances constituée, l’usager peut se servir du SBR. C’est l’étape
de l’exploitation ou du traitement des connaissances. Concrètement, cette opération prend la
forme d’un dialogue avec l’usager. Le dialogue SBR-usager s’effectue normalement selon le
mode suivant : le SBR pose une question et l’usager répond. Le moteur d’inférence se sert
des réponses de l’usager et des connaissances dans la base pour arriver à ses fins. Au cours
d’une séance de travail, le SBR essaie d’atteindre un but, soit en déduisant des conclusions à
partir d’hypothèses fournies par l’usager, soit en déterminant des conditions à satisfaire pour
que la conclusion fixée par l’usager se réalise. La tâche du moteur d’inférence revient à
déduire des faits en affectant des valeurs à des attributs. Pour y parvenir, il applique des
règles et il obtient des réponses de l’usager lorsque sa base de connaissances ne lui permet
plus de poursuivre son raisonnement.

La possibilité d’opérer en mode explication est exclusive à un système à base de
connaissances. Cela permet d’atteindre un double but en travaillant avec un SBR : apprendre
les connaissances dont il dispose et observer comment ces connaissances sont mises en
pratique. On a déjà mentionné que le moteur d’inférence conserve une trace de ses étapes de
raisonnement. Pour ce faire, il gère trois piles dans la base de faits. En effet, le MI empile les
réponses de l’usager, les faits déduits et les règles appliquées. Les empilements de la base
de faits permettent au module d’explication de fournir à l’usager une réponse à des questions
du type :

Pourquoi? Le module donne les raisons qui ont conduit le SBR à poser telle question à
l’usager (justification).

Comment? Il énumère les arguments (les règles) invoqués pour déduire telle conclusion
(justification).

Quoi si? Il fournit les déductions possibles si telle réponse était fournie par l’usager
(anticipation).

Quoi? Il produit une liste des résultats du raisonnement depuis que le dialogue est
amorcé avec l’usager (sommaire).

En somme, le module d’explication d’un SBR peut justifier les résultats déduits par son
mécanisme d’inférence, anticiper des conclusions selon des circonstances hypothétiques et
produire un sommaire du dialogue avec l’usager. Toutes ces possibilités sont accessibles à
n’importe quel moment. Ce sont là des manifestations d’un comportement « intelligent »,
n’est-ce pas?

Déroulement d’une session de travail

Supposons que nous disposons d’un SBR pouvant accéder à quelques bases de règles
préalablement créées, les étapes d’opérations qui permettront d’explorer les principales
fonctionnalités du SBR sont celles-ci :

1. Sélection d’une base de règles. – Il s’agit d’indiquer au système quelle base doit être
chargée en mémoire.

2. Sélection du mécanisme d’inférence. – La plupart des MI supportent des variantes des
deux modes d’inférence de base : le chaînage avant et le chaînage arrière. C’est pourquoi
on doit préciser le mode d’inférence à appliquer pour la prochaine étape.

10

3. Initialisation de la base de faits. – L’usager pose le problème au SBR. Si on a choisi le
chaînage avant l’étape précédente, on fournit les faits qui constituent les hypothèses à
partir desquelles le MI fera ses déductions. Dans le cas du chaînage arrière, on définit la
conclusion à démontrer par le Ml.

4. Enclenchement du moteur d’inférence.

5. Dialogue SBR-usager. – Le moteur d’inférence poursuit son mécanisme de raisonnement.
Il peut solliciter l’usager pour qu’il fournisse des réponses aux questions qu’il lui pose.
L’usager peut répondre directement aux questions ou demander au SBR de fournir des
explications sur le déroulement de la session de travail.

4. Logique de fonctionnement du moteur d’inférence
Nous allons maintenant nous attarder au fonctionnement du module le plus important d’un
système à base de règles : le moteur d’inférence. C’est lui qui en constitue la partie active en
raison de sa méthode d’exploitation des connaissances. On peut programmer un MI pour qu’il
« raisonne », c’est-à-dire qu’il effectue ses déductions en utilisant les règles de différentes
manières. Nous verrons les deux modes fondamentaux de fonctionnement d’un MI : en
chaînage avant et en chaînage arrière, chacun de ces modes étant approprié à des contextes
particuliers.

Voyons comment un moteur d’inférence peut atteindre un but en appliquant des règles. Pour
centrer notre attention sur le mécanisme de déduction, nous partons de la petite base de
règles suivante :

Rl
R2
R3
R4
R5
R6
R7
R8
R9

si B et D et E
si D et G
si F et C
si B
si D
si A et X
si C
si X et C
si X et B

alors F
alors A
alors A
alors X
alors E
alors H
alors D
alors A
alors D

Supposons que les faits B et C sont connus. Essayons de démontrer A en appliquant les
neufs règles précédentes. La figure 3 montre un cheminement possible.

Figure 3 Simulation d’un mode d’inférence.

11

Les « faits » connus ou déduits sont en caractères gras. Bien que cet exemple ne fasse
intervenir que des variables (A, B, C, etc.), on pourrait appliquer notre méthode de déduction
à un contexte réel. Il suffirait de remplacer les symboles par des propositions ou des faits
comme « La cliente est privilégiée » ou « Le patient est cardiaque » pour en déduire des faits
ayant une signification concrète. Nous nous limitons à une forme symbolique pour mettre
l’accent sur le mécanisme d’inférence.

La procédure d’inférence simulée ici est simple : nous parcourons séquentiellement les règles
pour rechercher les symboles connus dans leur partie condition. Quand tous les symboles de
la partie condition d’une règle sont déjà connus, nous ajoutons sa conclusion à la liste des
faits connus. Nous procédons ainsi jusqu’à ce que le but à atteindre (A) puisse être déduit ou
qu’il ne reste plus de règles applicables. Ce mode d’inférence est particulier, on l’appelle
chaînage avant. On peut le programmer pour en faire un moteur d’inférence qui pourra
déduire des faits à partir de faits déjà connus. C’est donc une forme de raisonnement que l’on
peut informatiser.

4.1 Navigation dans un réseau
On peut considérer un moteur d’inférence comme une machine qui recherche des solutions
aux problèmes qu’on lui soumet et pour y arriver, il doit parfois suivre un cheminement
sinueux. De ce point de vue, la recherche d’une solution se compare à la recherche d’un
chemin nous menant d’un point de départ à une destination choisie. Il s’agit d’une recherche
d’un parcours dans un réseau par l’application d’une stratégie de navigation. Le choix d’un
itinéraire sur un réseau routier ou la détermination du chemin le plus court parmi plusieurs
chemins possibles entre deux lieux en sont des exemples.

Figure 4 Un petit réseau.

La figure 4 montre que les deux constituants d’un réseau sont les nœuds et les arcs. Les
nœuds correspondent à des lieux ou à des états à atteindre et les arcs sont des chemins,
sorte de liens entre les nœuds. Nous n’avons qu’à penser à des réseaux routiers, aériens, de
communication ou neuronaux pour imaginer ce que sont les nœuds et les arcs dans chacun
de ces contextes.

Une stratégie de navigation dans un réseau repose sur une procédure de recherche de
parcours entre deux nœuds : le départ et la destination. L’élément essentiel de la stratégie est
le suivant : parvenu à un nœud, il nous faut trouver un arc (chemin) qui nous conduira à un
nœud successeur pour assurer la poursuite de notre parcours vers la destination. Mais on
peut se retrouver dans un cul-de-sac, c’est-à-dire qu’après avoir atteint un nœud, il est
possible que l’on ne puisse continuer vers la destination. Dans ce cas, nous devons faire

12

marche arrière pour essayer d’autres parcours. Par ailleurs, il est toujours possible et instructif
de conserver une trace du parcours emprunté et même des essais infructueux en vue
d’arriver à une solution. Cela est possible en empilant les nœuds atteints dans le parcours
menant du point de départ au point d’arrivée.

Imaginons que la figure 4 représente un réseau routier reliant des villes identifiées par des
lettres et que l’on veut atteindre G à partir de A. Il y a plus d’un parcours possible et certains
mènent à une impasse. Voici les étapes possibles du trajet A à G :

• A, B, C, cul-de-sac
• retour à B, D, E, cul-de-sac
• retour à D, G ou F, G

Notre stratégie est simple : avancer jusqu’à une impasse et retour en arrière pour trouver un
nœud à partir duquel on peut continuer notre cheminement vers le but. À partir d’un nœud, il
peut y avoir plusieurs destinations possibles. On doit choisir la direction qui nous semble
conduire au but ou qui nous semble 1a plus intéressante. On peut également conserver une
trace de notre parcours en notant les nœuds atteints. C’est ce que l’on appelle une
description qualitative d’une méthode de navigation systématique dans un réseau. On peut en
donner une description plus précise sous forme procédurale. En voici une sous forme
d’algorithme :

Paramètres de navigation : Réseau, Départ, Destination,
Pile nœuds

Procédure Parcourir Réseau
Obtenir Départ et Destination
Pile_nœuds <- Départ
TANT QUE (Pile_nœuds non vide et Destination pas atteinte)

FAIRE
Identifier les nœuds accessibles
Si au moins un nœud accessible ALORS

Choisir le nœud à atteindre
Mémoriser le nœud atteint
Empiler (Pile_nœuds <- nœud atteint)

SINON
Dépiler

L’opération « Identifier les nœuds accessibles » permet de reconnaître toutes les directions
possibles à partir d’un nœud. Par exemple, à partir du nœud B du réseau de la figure 4, on
peut se diriger vers C ou D. Il faut songer à la manière dont on va explorer les directions
possibles. C’est précisément la fonction de « Choisir le nœud à atteindre ». On peut décider
d’explorer systématiquement toutes les directions possibles ou en choisir une selon un critère
décidé à l’avance, comme la distance à franchir entre les nœuds. On peut par exemple
décider d’aller toujours vers le nœud le plus rapproché de celui sur lequel on se trouve.

L’opération « Empiler » permet de conserver une trace de notre parcours en construisant une
pile des nœuds dans l’ordre où on les a atteints. Ainsi, les nœuds du parcours A à G sont
empilés dans « Pile_nœuds ». À la fin du parcours, le contenu de cette pile est [A, B, D et G]

13

ou [A, B, D, F et G] selon la direction prise au nœud D. Avec « Dépiler », on s’assure que l’on
peut faire marche arrière si l’on se retrouve dans une impasse. En effet, « Dépiler » consiste à
revenir au nœud précédent en biffant, des directions possibles, le nœud cul-de sac. Il s’agit
d’une stratégie typique de chaînage arrière. Nous allons voir maintenant au tableau 1 que les
algorithmes de fonctionnement d’un moteur d’inférence sont analogues à la procédure de
navigation dans un réseau.

Tableau 1 – Navigation dans un réseau et fonctionnement d’un moteur d’inférence

Navigation dans un réseau Fonctionnement d’un système à base
de règles

nœud
arc
réseau
pile des nœuds
départ
destination
véhicule
Identifier les nœuds accessibles
Atteindre un nœud
Produire un parcours trouvé

fait
règle
base de règles
base de faits
hypothèse ou fait à démontrer
conclusion ou fait vérifié
moteur d’inférence
Sélectionner les règles applicables
Appliquer une règle
Fournir des explications

4.2 Aperçu du fonctionnement d’un moteur d’inférence
Un moteur d’inférence est un programme qui établit des relations entre les connaissances
codifiées dans une base de règles et les faits particuliers soumis par l’usager et entreposés
dans la base de faits. Nous allons montrer que le MI s’acquitte de cette tâche en appliquant
différents modes de raisonnement. Cependant, tous les mécanismes d’inférence reposent sur
le postulat suivant :

On peut représenter les connaissances d’un domaine par une base de règles. Le format
général d’une règle est :

Si [partie condition]

Alors [partie conclusion]

où « partie condition » et « partie conclusion » sont des listes d’expressions du type [attribut]
[prédicat] [valeur]; ces expressions sont reliées par les opérateurs et, ou, non.

On comprend que de telles expressions décrivent des faits en rapport avec un objet défini par
une liste d’attributs qui peuvent prendre différentes valeurs. Il s’agit donc d’une représentation
qui nous est connue. On veut maintenant une procédure de traitement qui s’applique à cette
représentation. Quelle que soit la stratégie adoptée, sa logique générale de fonctionnement
est construite sur la séquence des trois opérations suivantes :

• sélection des règles applicables au contenu de la base de faits,
• choix de l’une des règles applicables,
• application d’une règle sélectionnée.

14

La figure 5 montre le schéma d’exécution du cycle de ces opérations.

Figure 5 Cycle d’un moteur d’inférence.

La manière dont s’effectuent le filtrage des règles et le choix d’une règle dépend de la logique
particulière de fonctionnement du MI. Il y a cependant un dénominateur commun à la plupart
des mécanismes d’inférence : l’application de la règle de déduction appelée modus panens.
Voici un énoncé de cette règle d’inférence logique :

Soit A et B, deux propositions.

si [A est vraie] et [A alors B] alors B est vraie.

À cet effet, le petit Larousse définit une inférence comme « une opération logique par laquelle
on passe d’une vérité à une autre, jugée telle en raison de son lien avec la première ». Pour
adapter cette définition au contexte des systèmes à base de règles, on n’a qu’à remplacer le
mot « vérité » par le mot « fait ». On verra donc comment un MI peut établir des liens entre
des connaissances en appliquant des règles. Pour chacun des mécanismes d’inférence de
base, nous produisons un algorithme qui montre comment un MI traite les règles d’une base

15

de règles, les faits stockés dans la base de faits et les réponses de l’usager, pour solutionner
des problèmes auxquels un SBC peut être confronté.

D’autre part, pour illustrer les algorithmes présentés, nous les mettons à l’épreuve dans une
situation concrète. Ainsi, nous simulons le fonctionnement d’un MI dans un contexte simplifié,
celui du comportement de certains indicateurs économiques. Voici donc une brève description
du contexte qui servira à nos simulations.

Si les taux d’intérêt diminuent, alors les indices boursiers ont tendance à augmenter.
Si, au contraire, les taux d’intérêt sont à la hausse, les indices de la bourse auront
tendance à diminuer. D’autre part, lorsque le taux de change du dollar est à la baisse,
cela crée une tendance à l’augmentation des taux d’intérêt. Inversement, si le taux de
change augmente, les taux d’intérêt tendent à diminuer.

Enfin, la banque centrale peut réagir sur l’économie en réduisant la masse monétaire et en
augmentant le taux d’escompte. Cela a pour effet d’augmenter les taux d’intérêt.

Pour exploiter efficacement ces connaissances, on doit identifier les propositions en cause et
leur associer une représentation symbolique concise qui fait ressortir les·attributs
caractérisant notre exemple.

TI = +
TI = -
IB = +
IB = -
$ = +
$ = -
MM= -
TE = +

les taux d’intérêt ont tendance à monter
les taux d’intérêt ont tendance à diminuer
les indices boursiers sont à la hausse
les indices boursiers sont à la baisse
le taux de change est à la hausse
le taux de change est à la baisse
la banque centrale réduit la masse monétaire
la banque centrale augmente le taux d’escompte

On voit que ces expressions traduisent des faits à l’aide d’un couple attribut-valeur. Ainsi,
l’expression TI= + veut dire que l’attribut TI prend la valeur +. D’autre part, il faut comprendre
la dépendance mutuelle des attributs pour voir comment la variation d’un attribut comme le
taux de change ($) peut affecter l’ensemble du système. À cette fin, on construit un arbre des
attributs comme celui illustré à la figure 6. Cet arbre montre que la valeur de l’attribut TI
résulte de la valeur de l’attribut $ ou de l’effet conjugué des valeurs de TE et MM. Enfin, la
valeur de TI détermine celle de IB.

Figure 6 Arbre des attributs.

16

Cette approche nous permet de reformuler le paragraphe précédent en un ensemble de
règles qui constituent une base de connaissances simplifiée sur l’économie. (Voir tableau 2.)

Tableau 2 – Base de règles simplifiée économie

Règle Condition Action
RI

R2

R3

R4

R5

Si TI = ―

Si TI = +

Si $ = ―

Si $ = +

Si MM = ― et TE = +

Alors 1B = +

Alors 1B = ―

Alors TI = +

Alors TI = ―

Alors TI = +

4.3 Chaînage avant3
Cette stratégie de résolution de problèmes part des faits ou des hypothèses pour en déduire
toutes les conséquences possibles. En chainage avant, le moteur d’inférence applique les
règles dans le sens du si vers le alors, c’est-à-dire de la partie condition vers la partie
conclusion. C’est généralement de cette façon que les règles sont appliquées lorsque l’on
apprend des faits nouveaux et que l’on désire en déduire toutes les conséquences.

Simulation avec la base Économie

Vous apprenez que la banque centrale vient d’augmenter le taux d’escompte et de diminuer la
masse monétaire. Vous utilisez un SBC pour déduire les conséquences de ces deux faits
(TE = + et MM = -). Voici comment un système à base de règles fonctionnant en chaînage
avant pourrait opérer dans une telle situation.

Étape 1
Au début, aucune règle n’est applicable puisque la base de faits est vide. Le système vous
interroge au sujet des taux d’intérêt et du taux de change. Vous n’en savez rien. Il vous
demande comment varie le taux d’escompte. Vous répondez qu’il augmente. Cela permet au
moteur d’inférence d’ajouter le fait TE = + à la base des faits. Le MI examine une après l’autre
les règles pour en trouver une dont la partie condition est dans la base de faits. Il n’en trouve
aucune, mais la cinquième règle est en partie vérifiée puisque l’une de ces conditions
(TE = +) est déjà dans la base de faits. Incapable de déduire lui-même un autre fait, le MI
vous demande comment se comporte la masse monétaire. Vous répondez qu’elle diminue et
cela permet au MI d’ajouter MM = - à la base de faits.

Étape 2
C’est alors que le processus de déduction par chaînage avant peut être amorcé, puisqu’une
règle (R5) est maintenant applicable. Le MI applique la cinquième règle, ce qui l’autorise à
ajouter la conclusion de cette règle (TI = +) à la base de faits. Ensuite, il marque la règle RS
qui ne peut plus rien nous apprendre dans ce contexte.

3 Quelques synonymes : déduction, inférence par les données, forward chaining et data driven.

17

Étape 3
Il consulte la première règle et constate que sa condition (TI = -) contredit l’un des faits de la
base de faits (TI = +). Cela amène le MI à marquer la règle Rl qui ne pourra rien déduire. Par
contre, la condition de la règle R2 est satisfaite. En appliquant R2, le MI ajoute le fait IB = - à
la base de faits et marque cette règle. Le moteur d’inférence est forcé de s’arrêter, puisqu’il
n’y a plus aucune règle applicable.

Au tableau 3, nous avons le contenu de la base de règles et de la base de faits après chaque
étape du MI.

Tableau 3 Simulation du chaînage avant avec la base de règles Économie

Étapes Règles non marquées Pile des
faits

Règles appliquées

1

R1 : TI = ─ → IB = +
R2 : TI = + → IB = ─
R3 : $ = ─ → TI = +
R4 : $ = + → TI = ─
R5 : TE = + et MM = ─
 → TI = +

MM = ─
TE = +

aucune

2

R1 : TI = ─ → IB = +
R2 : TI = + → IB = ─
R3 : $ = ─ → TI = +
R4 : $ = + → TI = ─

TI = +
MM = ─
TE = +

R5

3

R3 : $ = ─ → TI = +
R4 : $ = + → TI = ─

IB = ─
TI = +
MM = ─
TE = +

R2

Algorithme
Cette méthode consiste à empiler des faits déduits par l’application de règles ou obtenus de
l’usager. Le moteur d’inférence cherche dans la base de règles, des règles dont au moins un
fait de leur partie condition est déjà dans la pile des faits. Appliquer une règle reconnue vraie
consiste à empiler sa conclusion dans la pile des faits et à marquer cette règle qui ne sera
plus consultée puisqu’elle ne pourra plus rien nous apprendre. Une règle est déclarée fausse
et également marquée lorsqu’un fait de sa partie condition contredit un fait de la pile des faits.
Quand aucune règle n’est applicable, le MI pose une question à l’usager pour obtenir un fait
qui lui permettrait d’en déduire de nouveaux. Le procédé continue tant que le dialogue peut se
poursuivre avec l’usager et qu’il reste des règles qui ne sont pas marquées.

Les moteurs d’inférence comportent généralement une instruction de type « Fournir des
explications » qui peut nous éclairer sur la manière dont sont faites les déductions par le MI.

Revenons à notre simulation avec la base économie. À l’étape 1, lorsque le système s’informe
de la variation du taux d’escompte (TE), on pourrait répondre pourquoi. Ce à quoi le SBR
répondrait « Je tente d’appliquer la règle 5: Si TE = + et MM= - alors TI= +. ». Après l’étape 2,

18

la commande quoi demande au système de produire un sommaire des faits connus. Il n’aurait
qu’à fournir le contenu de la pile des faits, c’est-à-dire « TE = +, MM = -, TI= + ». À la fin du
dialogue, on pourrait demander comment lB = -. La réponse du MI pourrait être « J’ai déduit lB
= - en appliquant la règle 2 : Si TI= + alors lB = - ». On voit donc qu’un SBR peut donner des
explications sur son propre fonctionnement à partir du contenu de la mémoire de travail,
notamment celui de la pile des faits.

4.4 Chaînage arrière4
Cette stratégie de résolution de problèmes part d’une conclusion à démontrer pour identifier
les conditions qui doivent être satisfaites. En chaînage arrière, le moteur d’inférence applique
les règles dans le sens du alors vers le si, c’est-à-dire de la partie conclusion vers la partie
condition. C’est généralement de cette façon que les règles sont appliquées lorsque l’on veut
connaître les conditions requises à la réalisation d’un fait. C’est donc un mode de
fonctionnement approprié à la recherche d’informations manquantes à la compréhension d’un
phénomène.

Le langage Prolog en est un bel exemple, puisque sa partie essentielle est un moteur
d’inférence qui fonctionne en chaînage arrière. Pour parvenir à démontrer une conclusion, les
mécanismes de chaînage arrière identifient des buts intermédiaires qu’il faut démontrer pour
atteindre un but. Pour y parvenir, ils traitent les règles, empilent les buts à démontrer, les
conclusions intermédiaires déduites et les règles appliquées. Ce processus en cascade
permet de vérifier toutes les conditions requises à la réalisation d’une conclusion. Cela
implique parfois un retour en arrière ou une « remontée » dans la base de règles
(back-tracking).

Le comportement d’un conducteur qui ne dispose pas d’une carte routière et qui tente par
essais et erreurs d’atteindre un lieu est un bon exemple de retour en arrière. Dans ce cas, le
conducteur doit trouver les lieux qui sont sur un chemin le menant à la destination cherchée.
Parvenu à une intersection, il choisira une direction et continuera dans cette voie tant qu’il
« sent » qu’il se rapproche du but. Dans le cas contraire, il reviendra en arrière pour trouver
un lieu à partir duquel il pourra prendre une autre direction qui le conduira à sa destination. Le
déplacement dans un labyrinthe, lorsqu’il est possible de garder une trace de son parcours
pour refaire une partie du trajet en sens inverse, en est un autre exemple.

Simulation avec la base Économie

Vous voulez savoir dans quelles conditions vos actions en bourse risquent de perdre de la
valeur. Vous utilisez le système à base de règles de l’exemple précédent, en chaînage arrière
en partant de la conclusion « les indices boursiers sont à la baisse ». Le MI trouve les
conditions à vérifier, c’est-à-dire quels faits doivent se produire pour arriver à la conclusion
IB –. Pour faciliter la compréhension du procédé, la figure 7 montre la structure logique
arborescente de la base Économie qui contient cinq règles exprimant huit faits.

4 Quelques synonymes : régression, inférence par le but, backward chaining et goal driven.

19

Figure 7 Structure logique de la base Économie.

La structure de la base de règles de notre exemple sur l’économie montre que les indices
boursiers auront tendance à diminuer dès que les taux d’intérêt seront à la hausse. Ce fait se
produit si le taux de change diminue ou encore si la banque centrale augmente le taux
d’escompte et diminue la masse monétaire. La figure 3.7 montre que l’on peut arriver à la
conclusion IB = - en appliquant la règle 2 après avoir obtenu TI = +. On peut parvenir à cette
conclusion intermédiaire par deux chemins différents : en appliquant la règle 3 ou la règle 5.

Supposons maintenant que l’on ignore la tendance du taux de change. Par ailleurs, on
apprend que la banque centrale vient d’augmenter le taux d’escompte et de diminuer la
masse monétaire. Voyons comment un système à base de règles fonctionnant en chaînage
arrière pourrait en arriver aux mêmes résultats que nous, à savoir que les indices boursiers
auront tendance à diminuer.

Étape 1
Le MI sélectionne les règles 1 et 2, puisqu’elles ont l’attribut IB comme conclusion. Leur
attribut condition TI devient le nouveau but à démontrer. Le moteur sélectionne les règles 3, 4
et 5, puisque leur conclu sion porte justement sur la valeur de l’attribut Tl. La première règle
sélectionnée R3 s’appuie sur l’attribut $ dans sa partie condition qui devient à ce moment le
nouveau but à atteindre.

Étape 2
Il n’y a aucune règle applicable et le MI pose une question sur la tendance du taux de change
($). Puisque nous n’en savons rien, le MI élimine $ comme conclusion possible et marque les
règles 3 et 4, car elles sont devenues inapplicables. Il reste à appliquer la règle 5 qui implique
la démonstration à la fois de TE = + et de MM = -. Le système demande comment varie le
taux d’escompte. On répond qu’il augmente. Le MI empile donc TE = + dans la base de faits.
De la même manière, il vérifie la variation de la masse monétaire. Notre réponse permet au
MI d’ajouter MM= - à la pile des faits et d’appliquer la règle 5.

Étape 3
Alors s’effectue la « remontée » pour ajouter TI = + à la pile des faits et l’enlever de la pile des
buts, ce qui ramène l’attribut IB comme conclusion à démontrer. Le retour en arrière se
poursuit. Le MI marque la règle 1 parce que sa condition (TI = -) contredit la conclusion de la
règle 5. Enfin, il applique la règle 2 pour conclure à IB =.

20

Au tableau 4, nous avons le contenu de la base de règles et de la base de faits après chaque
étape du MI.

Tableau 4 – Simulation du chaînage arrière avec la base de règles Économie

Étapes Règles non marquées Pile des
faits

Pile des
buts

Règles
sélectionnées

1 R1 : TI = ─ → IB = +
R2 : TI = + → IB = ─
R3 : $ = ─ → TI = +
R4 : $ = + → TI = ─
R5 : TE = + et MM = ─
 → TI = +

$
TI
IB

R1
R2
R3
R4
R5

2 R1 : TI = ─ → IB = +
R2 : TI = + → IB = ─
R5 : TE = + et MM = ─
 → T I = +

MM = ─
TE = +

TI
IB

R5

3 IB = ─
TI = +
MM = ─
TE = +

 R5
R1
R2

Algorithme
Cette méthode consiste à identifier et à empiler des buts intermédiaires qui doivent être
vérifiés pour en arriver à un but final. Lorsqu’une conclusion intermédiaire est démontrée, elle
est biffée de la pile des buts pour être empilée sur la pile des faits. Comme en chaînage
avant, les faits sont déduits par application de règles ou sont obtenus de l’usager. Le moteur
d’inférence inspecte la base de règles pour rechercher celles dont au moins un fait de leur
partie conclusion est déjà dans la pile des buts. Appliquer une règle reconnue vraie consiste à
empiler sa conclusion dans la pile des faits, à la retirer de la pile des buts et à marquer cette
règle qui ne pourra plus rien nous apprendre. Ce sont l’empilement et le dépilement des buts
qui permettent au moteur d’inférence d’avancer vers le but final à démontrer ou d’effectuer un
retour en arrière (backtracking) pour vérifier d’autres buts intermédiaires qui pourraient
conduire au but final. Une règle est déclarée fausse et marquée lorsqu’un fait de sa partie
condition contredit un fait de la pile des faits. Quand aucune règle n’est applicable, le MI pose
une question à l’usager pour obtenir un fait qui lui permettrait d’en déduire de nouveaux. Le
procédé continue tant que le dialogue peut se poursuivre avec l’usager et qu’il reste des buts
dans la pile des buts.

Pour voir comment opère un tel mécanisme d’inférence, on peut le mettre à l’épreuve dans le
contexte d’une enquête, en vue de démontrer qu’un individu est coupable d’un crime. Dans un
tel cas, on doit vérifier si le suspect a un alibi, des motifs sérieux de commettre le crime dont
on le soupçonne et si des témoignages ou des faits incriminants peuvent confirmer notre
hypothèse. Pour y parvenir, on construit d’abord une argumentation qui peut se formuler sous
la forme de règles du type « Si le suspect a un alibi sérieux alors il est innocent >> et « Si le
suspect était à l’hôpital lors du crime alors il a un alibi sérieu ». Ensuite, on interroge des
témoins pour tenter de confirmer ou d’infirmer notre argumentation. Il peut arriver que nous
soyons incapables de vérifier certaines conditions requises à la confirmation de nos

21

soupçons. Par ailleurs, il se peut qu’une piste s’avère infructueuse et que nous ayons à
remettre en cause certaines hypothèses et à en reformuler de nouvelles, toujours dans le but
de démontrer que le suspect est coupable. Il s’agit d’un processus typique de chainage
arrière.

4.5 Variantes des mécanismes d’inférence de base
Nous venons de voir deux mécanismes fondamentaux, soit celui en chaînage avant et celui
en chaînage arrière. Les algorithmes suggérés donnent une bonne idée du fonctionnement
général d’un moteur d’inférence, mais ils ne rendent pas compte de tous les détails. Or, ce
sont des « détails» comme la logique d’inférence qui distinguent les systèmes commercialisés
à base de règles. Certains MI permettent les chainages avant et arrière, d’autres, un seul des
deux. La plupart fonctionnent selon un amalgame et des variantes des deux mécanismes de
base. Voici un aperçu de la diversité offerte par les éditeurs de SBC.

Chaînage mixte
Le chaînage mixte combine le chaînage avant et le chaînage arrière. Cependant, à une étape
donnée du fonctionnement d’un MI en chaînage mixte, un seul mode d’inférence est appliqué.
En général, un MI en chaînage mixte commence son travail en chaînage arrière pour
accumuler des informations dans la base de faits. À cette étape, il fait souvent appel à
l’usager pour répondre à des questions. Ensuite, il passe en chaînage avant pour déduire
toutes les conclusions que lui autorisent les faits connus et empilés dans la base de faits. Le
MI applique un critère arbitraire ou parfois un critère défini par le concepteur pour changer de
mode d’inférence. Ainsi, une accumulation de cinq faits dans la base de faits peut déclencher
le changement du chaînage arrière au chaînage avant.

Recherche en largeur ou en profondeur
La recherche désigne la manière dont la sélection des règles applicables s’effectue. Pour
comprendre cette notion, il faut se rappeler qu’une base de règles peut être représentée par
un réseau de faits reliés par des règles. Mais il existe un type de réseau particulier, l’arbre,
comme celui· de la figure 4. La recherche en largeur ou en profondeur fait référence à la
manière de relier les faits en appliquant des règles. En largeur, le moteur d’inférence
sélectionne les règles qui permettent de déduire tous les faits appartenant à un même niveau
de l’arbre, avant de déduire ceux d’un niveau inférieur. En profondeur, il applique les règles
qui déduisent les faits qui « descendent d’une même branche » de l’arbre, avant de déduire
ceux des branches latérales. La figure 8 illustre la structure arborescente d’une base de
règles fictive. Les termes Fl, F2 et jusqu’à F10 désignent des faits alors que R1, R2 et jusqu’à
R9 représentent des règles.

Supposons que l’on fonctionne en chaînage avant et que l’on connaisse les faits F1, F2 et F3.
Par une recherche en profondeur, un moteur d’inférence applique dans l’ordre les règles R4,
R5, R6, R8 et R9. À la fin de cette démarche, la base de faits contient F1, F2, F3, FS, F6, F7,
F9 et F10. D’autre part, une recherche en largeur applique dans l’ordre les règles R3, R4, R5,
R6, R7, RS et R9. Nous avions numéroté les règles en parcourant en largeur! Après
l’application des règles en largeur, la base de faits contient les dix faits F1 à F10 exprimés
dans la base de règles.

22

Figure 8 Base de règles parcourue en largeur ou en profondeur.

On constate que les résultats des deux méthodes de recherche diffèrent. En effet, une
recherche en largeur déduit tous les faits accessibles à partir des faits connus. Par contre,
une recherche en profondeur est plus sélective et plus performante en temps de traitement.
Les distinctions entre ces deux variantes de recherche sont décrites plus loin dans la
procédure Choisir la règle à appliquer.

5. Évaluation des mécanismes

5.1 Observations sur le fonctionnement d’un moteur d’inférence

Le dialogue SBC-usager est intégré au mécanisme d’inférence

La procédure Recourir à l’usager est très importante, puisque les réponses obtenues
permettent souvent au moteur d’inférence de poursuivre son raisonnement. En effet, la
participation de l’usager au fonctionnement du programme constitue un élément de
dynamisme qui ajoute à l’intérêt des systèmes à base de connaissances. Pour que cette
interaction SBR-usager soit profitable, il faut la concevoir soigneusement. Cela veut dire que
les concepteurs d’une base de connaissances devront prévoir les questions que posera
éventuellement le MI, lorsqu’il sera momentanément immobilisé dans son processus
d’inférence. En règle générale, les SBR permettent d’associer une question à chaque attribut
et de définir un choix de valeurs possibles lors de la définition d’une base de règles. Ainsi, lors
de la définition de l’attribut nombre de cylindres pour l’objet voiture, on pourra lui associer la
question et le choix de réponses suivants : « Vous désirez un moteur de combien de
cylindres? [4, 6 ou 8?] » Il est clair que l’on tiendra compte du choix des valeurs d’attributs
dans la rédaction des règles pour traiter toutes les situations prévisibles.

Dans nos descriptions d’algorithmes et dans nos simulations, nous avons mentionné la
fonction du module d’explication, une possibilité intrinsèque au fonctionnement des moteurs
d’inférence découlant de la gestion d’une base de faits comme une pile. À n’importe quel
moment du dialogue avec le SBR, l’usager peut demander des explications sur la manière
dont s’effectue le processus d’inférence des connaissances. Pour l’informer sur ce sujet, le

23

système n’a qu’à afficher le contenu de la base de faits en dépilant son contenu et ce, sans
rompre la logique d’inférence. C’est la fonction de la procédure Fournir des explications. De
cette manière, l’usager peut savoir quelle règle est appliquée, comment un fait a été déduit,
où en est rendu le MI dans ses déductions successives et même quel fait pourrait être déduit
si tel autre survenait. Nous ne saurions trop insister sur la valeur pédagogique, voire
heuristique, du module d’explication. Il s’agit d’un moyen de mettre l’usager en contact avec la
logique de traitement des connaissances d’un sujet.

La base de connaissances évolue lors d’une session de travail

Le contenu de la base de connaissances change lors du dialogue avec l’usager. Au début de
la consultation, aucun attribut n’a une valeur, tous les attributs sont « vides ». C’est par les
réponses de l’usager et l’application de règles par le MI que des valeurs seront données à des
attributs.

D’autre part, le nombre de règles applicables diminue au cours d’une consultation. En effet, le
MI marque une règle dès qu’elle est déclarée vraie ou fausse. Une règle ainsi marquée
demeure dans la base de connaissances, mais ne sera plus consultée par la suite dans le
dialogue avec l’usager. On peut donc voir que plus le dialogue SBC-usager progresse, le
processus de recherche des règles dans la base devient plus rapide. Ce fait est très important
lorsqu’une base contient un grand nombre de règles, ce qui est le cas des SBC spécialisés
dans un sujet vaste.

Le moteur d’inférence est autonome mais il peut solliciter de l’aide

L’usager définit les hypothèses ou détermine le but final d’une consultation. Le MI part de ces
faits à démontrer et se fixe lui-même des objectifs intermédiaires à atteindre dans la poursuite
de son raisonnement. En chaînage arrière, le MI ramène le problème principal (la
démonstration du but final) à des sous-problèmes (la démonstration de buts intermédiaires).
Ce fait est caractéristique d’un comportement intelligent. Toutefois, le MI a recours à l’usager
pour l’aider à progresser dans sa démarche. Le mécanisme de déduction peut avorter si le MI
ne trouve pas de question à poser à l’usager en vue de trouver la valeur d’un attribut. Il est
donc essentiel que les concepteurs d’un système à base de règles prévoient un dialogue
approprié pour assister le MI dans son fonctionnement.

Les connaissances sont indépendantes du moteur d’inférence

Voilà une réalité qui découle de la séparation très grande entre les données et les
programmes dans un système à base de règles. La logique du traitement des règles est
intégrée dans le MI et est ainsi complètement dissociée de la base de règles. C’est pourquoi,
on peut concevoir des bases de règles sur des sujets différents en ayant toujours recours au
même moteur d’inférence. Avec les SBR, la notion d’indépendance des données et des
programmes est encore plus accentuée qu’avec les autres catégories de logiciels.

Le MI est générique par rapport aux domaines qu’il peut traiter, puisque sa logique est valable
pour n’importe quelle base de connaissances. Il y a toutefois une restriction : toutes les
connaissances d’un sujet doivent être codées sous la forme de règles dont le format est :

Si [partie condition]

Alors [partie conclusion]

24

Étant donné la généralité du moteur d’inférence nous pouvons l’utiliser dans plusieurs
contextes. En effet, on peut changer de problème et conserver le même MI, car celui-ci peut
être spécialisé dans plusieurs sujets. Pour changer le domaine d’un SBC, il suffit de changer
le contenu de sa base de connaissances tout en conservant le même MI.

La base des faits alimente le module d’explication

Le moteur d’inférence gère une seule structure de données dans la base de faits : la pile. Ceci
lui permet de reconstituer le déroulement d’une consultation avec l’usager, puisque la base de
faits contient une image du dialogue SBC-usager. On dit qu’un SBC peut expliquer et justifier
son propre fonctionnement. En effet, le contenu de la base de faits permet au MI :

• d’expliquer pourquoi telle question est posée à l’usager (pourquoi);
• d’expliquer comment un fait est déduit (comment);
• de faire un sommaire des faits déduits à n’importe quel moment de la consultation (quoi);
• d’extrapoler en prédisant quelles déductions seraient possibles si telle réponse était

fournie par l’usager (quoi si).

5.2 Comparaison et synthèse des méthodes d’inférence
Les mécanismes d’inférence en chaînage avant ou en chaînage arrière se ressemblent
beaucoup. En effet, il suffit de constater qu’ils « proviennent » tous deux d’algorithmes
généraux présentés aux sections 4.1 et 4.2. D’ailleurs, toutes les variantes d’inférence ont en
commun les procédures Sélectionner les règles applicables, Choisir la règle à appliquer et
Appliquer une règle. Ce sont les détails de chacune de ces procédures qui expriment les
particularités de chaque mode d’inférence.

En se reportant aux algorithmes présentés aux sections 4.3 et 4.4, on constate que ce sont
principalement les procédures Sélectionner les règles applicables et Choisir la règle à
appliquer qui distinguent le mode en chaînage avant de celui en chaînage arrière. En effet, la
sélection des règles applicables se fait à partir des conditions en chaînage avant ou à partir
des conclusions en chaînage arrière. D’autre part, le choix d’une règle se fait par un
mécanisme de contrôle qui peut fonctionner selon l’une des consignes suivantes :

• recherche de toutes les solutions possibles;
• arrêt lorsqu’une première solution est trouvée;
• application des règles en respectant des priorités;
• application des règles en largeur ou en profondeur.

Cette énumération des consignes montre que la logique de la procédure Choisir la règle à
appliquer est fondamentale : elle détermine la performance du mécanisme d’inférence et les
résultats qu’il produira. Nous y reviendrons plus loin.

On a mentionné que chaque mode d’inférence est adapté à un contexte d’opération
particulier. Ainsi, le chaînage avant est particulièrement efficace lorsque l’on connaît déjà un
ensemble de faits sur un sujet et que l’on désire en déduire les conséquences possibles. Par
contre, le chaînage arrière semble approprié lorsque l’on dispose de peu d’informations sur un
sujet et que l’on désire connaître les conditions requises à la réalisation d’un événement. Le
tableau 5 suggère des critères de comparaison entre les deux modes d’inférence de base.

25

Tableau 5 – Chaînage avant et chaînage arrière

Particularité Chaînage avant Chaînage arrière
Sens de l’inférence de la condition vers la

conclusion
de la conclusion vers la
condition

Raisonnement progression régression

Situation appropriée des faits sont déjà connus peu de faits sont connus

Choix des règles recherche en sens unique retour en arrière (backtracking)

Contenu de la mémoire de
travail

Pile de faits
Pile de règles

Pile de faits
Pile de règles
Pile de buts

6. Optimisation de la performance d’un moteur d’inférence
On est en droit de s’interroger sur la performance d’un MI. Le terme performance ne se
mesure pas seulement en temps d’exécution, mais fait également appel à la valeur des
solutions obtenues. On pense ici à la capacité d’un programme de déduire et de découvrir des
connaissances signifiantes. Cela fait directement référence à la puissance heuristique; ce qui
nous amène à considérer la performance d’un SBR tant sur le plan quantitatif que sur le plan
qualitatif.

6.1 Structuration des connaissances dans une base de règles
Si l’on veut améliorer le temps d’exécution du mécanisme d’inférence par le MI, on doit
d’abord optimiser les procédures Sélectionner les règles applicables et Choisir une règle à
appliquer. La recherche des règles s’effectue dans toute la base. Avec une base
volumineuse, la recherche peut alourdir le fonctionnement du MI et peut ralentir le temps de
réponse à l’usager. On estime, généralement, que le nombre de règles dans une base croît
de façon exponentielle avec le nombre de valeurs d’attributs et de valeurs possibles pour
chaque attribut. Ainsi, en supposant que chaque attribut prend en moyenne trois valeurs, une
base de règles à cinq attributs pourrait compter jusqu’à 35 ou 243 règles alors qu’une base à
dix attributs pourrait en contenir 310 c’est-à-dire 59 049 règles. Comme le temps de recherche
d’une règle est relié directement au nombre de règles dans une base, on doit rendre le
mécanisme de sélection de règles très performant.

Une des stratégies d’optimisation repose sur le fait suivant : il faut regrouper les règles selon
un critère qui permet de restreindre la recherche à un sous-ensemble de la base. Or, ce
critère existe. En effet, le MI recherche une règle contenant, dans sa partie condition (en
chaînage avant) ou dans sa partie conclusion (en chaînage arrière), un certain attribut auquel
il tente d’affecter une valeur. La solution s’impose d’elle même : il suffit de grouper les règles
qui comportent un même attribut dans la partie condition ou dans la partie conclusion. En
appliquant cette stratégie, une base de connaissances est structurée en plusieurs sous
ensembles de règles, chaque sous-ensemble ayant un attribut commun. La recherche d’une
règle pourra alors se faire dans un nombre limité de règles. Ainsi, le temps de recherche et le
rendement général du MI en seront améliorés.

Notre approche de structuration des attributs, des faits et des règles dans une base de règles
s’appuie sur l’hypothèse suivante :

26

Le moteur d’inférence gère une structure de données de base : la liste.

D’abord, rappelons-nous que les piles maintenues par le MI dans la base de faits sont
précisément des listes, puisqu’une pile est un cas particulier de la liste. Nous voulons étendre
l’usage de la structure de liste à toutes les entités gérées par un MI notamment aux règles et
aux attributs dans la base de règles. Commençons par les règles. Une règle est décrite par
l’organisation suivante : Si [liste de conditions] Alors [liste de conclusions]. Au paragraphe
précédent, on a suggéré de « chaîner » les règles entre elles. Cela revient donc à maintenir
des listes circulaires de règles. Lorsqu’une règle est déclarée vraie ou fausse par le Ml, celle-
ci sera marquée, c’est-à-dire retirée de la liste des règles à consulter pour ainsi réduire le
temps de recherche dans la base. En ce qui concerne les attributs, il suffit d’en faire une autre
liste! La fonction d’un MI sera donc d’affecter des valeurs à certains éléments de la liste des
attributs. Dès qu’une valeur est affectée à un attribut, celui-ci est exclu de la liste des attributs
qui restent à affecter.

Il ne reste qu’à relier les attributs et les règles. En se rappelant que les règles ayant un attribut
commun forment une liste, il suffit de relier un attribut à sa liste de règles. Il est donc possible
de structurer attributs, faits et règles en les reliant pour former des listes. Par ailleurs, on peut
faire une analogie intéressante avec le contexte des systèmes de gestion de base de
données (SGBD). En effet, on peut considérer qu’une base de règles contient deux entités :
des attributs et des règles. Pour imaginer comment on peut relier ces entités, il suffit de
penser qu’un attribut peut se retrouver dans plusieurs règles et qu’une règle peut exprimer
l’état de plusieurs attributs, puisque les parties condition et conclusions ont des listes.

Autrement dit, à une règle, on peut associer plusieurs attributs et à un attribut, on peut
associer plusieurs règles.

La figure 9 illustre ce point de vue. On peut voir que les attributs Al, A2 et jusqu’à A7 sont
reliés en listes dans l’entité Attribut. Il en est de même des règles Rl, R2 et jusqu’à R7 qui
forment des classes par regroupements en listes dans l’entité Règle.

Figure 9 Structures présumées dans une base de règles.

Certaines « coquilles » commerciales de systèmes à base de règles offrent la possibilité
d’associer une classe à chaque règle. Il suffit de fournir la valeur de ce champ lors de la
création d’une base de règles. On peut associer un attribut particulier à une règle, la classe à
laquelle on l’assigne; cela permet de segmenter une base de règles en classes. Or, en
définissant des classes, on facilite le travail du MI, puisque l’on restreint la recherche des
règles applicables dans une seule classe de règles.

27

6.2 Priorités d’application des règles
C’est un critère qui indique au moteur d’inférence comment choisir une règle à appliquer
parmi plusieurs déjà sélectionnées. Le MI appliquera les règles en commençant par celle dont
la priorité est la plus forte. La priorité de chaque règle est fixée par la personne qui définit une
base. Pour ce faire, elle doit pondérer la valeur d’une règle selon ses possibilités de déduction
par rapport aux autres règles. Ainsi, une règle qui permet de déduire des faits jugés très
signifiants dans un contexte donné a une forte priorité. Par contre, une autre règle menant à
une conclusion improbable ou de moindre valeur se voit assigner une priorité inférieure. De
cette manière, on peut définir une hiérarchie dans une base de règles.

Pour définir une priorité de règle, il suffit de fournir une valeur numérique sur une échelle
graduée (généralement de 1 à 100). Par exemple, prenons des règles appliquées par un SBR
pour conseiller dans le choix de programmes d’études universitaires. Il apparaît normal de
connaître d’abord la moyenne cumulative des candidats avant leur note, dans une discipline
particulière. On pourra traduire cette intuition en priorité dans les règles de la manière
suivante :

Priorité Règle

80 Si
Alors

moyenne cumulative < 85 %
éviter les disciplines contingentées

60 Si
Alors

note en français > 90 %
envisager des études littéraires

Il existe un critère largement répandu et accepté pour déterminer la priorité d’une règle : à une
forte probabilité d’occurrence d’un fait dans un contexte donné doit correspondre une haute
priorité d’un règle traitant ce fait. Cela veut dire que la priorité d’une règle est directement
reliée à la probabilité que sa conclusion survienne et que sa fréquence d’application soit
anticipée, en un mot, déterminer son utilité. Comme pour la classe, l’établissement des
priorités se fait lors de la création d’une base de règles.

6.3 Métarègles
Les métarègles sont des règles qui décrivent la manière d’appliquer d’autres règles. Dans une
base de règles, les métarègles forment une classe particulière. Elles contrôlent la sélection et
le choix des autres règles. Il s’agit donc de règles qui sont très souvent appliquées par le MI
pour contrôler le processus d’inférence. Les métarègles prennent la ·forme suivante :

 Si
Alors

telle condition
appliquer telle(s) règle(s)

ou

 Si
Alors

telle condition
marquer telle(s) règle(s)

ou
 Si

Alors
telle condition
sélectionner telle classe de règle(s)

28

Voici une métarègle d’une base de règles qui peut alimenter un moteur d’inférence jouant aux
échecs :

Si
Alors

avantage de pièces
sélectionner règles qui mènent à des échanges de pièces

6.4 Heuristiques
Le petit Robert définit l’heuristique comme « partie de la science qui a pour objet la
découverte des faits ».·Dès les premiers travaux en intelligence artificielle, on a incorporé des
heuristiques à des programmes. La caractéristique essentielle d’une procédure heuristique
est de se diriger vers un but pour que chaque nouvelle « découverte » nous en rapproche.
Cela revient à dire qu’une telle procédure peut évaluer chaque déduction effectuée au cours
d’un processus d’inférence et juger si elle contribue à s’approcher ou à s’éloigner de l’objectif.
Voilà pourquoi les programmes dits heuristiques sont dotés d’une fonction d’évaluation.
Comme son nom l’indique, cette fonction évalue l’état des connaissances acquises à chaque
étape d’inférence et le compare à l’état identifié comme l’objectif du processus.

Une fonction d’évaluation intégrée à la procédure Choisir la règle à appliquer fournit au
mécanisme d’inférence, des critères d’application de règles. Elle peut indiquer que telle règle
est plus pertinente que telle autre dans une situation précise. À titre d’exemple, on peut
trouver systématiquement des solutions au jeu du taquin à 8 tuiles en utilisant une fonction
d’évaluation comme celle présentée à la figure 2 du texte 1 de ce cours. Si on revient au
contexte du jeu d’échecs, on peut imaginer qu’un programme « intelligent » doit disposer
d’une procédure d’évaluation de positions pour choisir le meilleur coup parmi plusieurs
possibles.

7. Traitement des connaissances incertaines
Jusqu’à maintenant, nous avons implicitement admis que les moteurs d’inférence ont un
fonctionnement déterministe, c’est-à-dire qu’ils traitent des connaissances absolument
certaines. Or très souvent, on ne peut affirmer que la conclusion d’une règle est une
conséquence certaine de sa partie condition. En fait, la plupart du temps, un expert
s’exprimera en termes probabilistes du genre : « Si on vous fait un pontage cardiaque, vous
avez 90 % des chances que votre état s’améliore » ou « En entreprenant un forage dans cette
région, j’évalue à 50 % la probabilité de trouver du pétrole et à 70 % celle de trouver du gaz
naturel. »

Il importe de ne pas affirmer plus que ce que l’on croit raisonnable. Une façon d’appliquer
cette règle de sagesse consiste à ajouter à chaque règle un facteur de probabilité ou facteur
de confiance. Il exprime une certitude plus ou moins grande qu’un phénomène se produira si
certaines conditions sont vérifiées. Ce facteur est un nombre entre 0 et 1. Ainsi, un facteur de
confiance de 0,7 associé à une condition signifie que nous croyons qu’elle est valable à 70 %
et un facteur de 1, qu’elle l’est à 100 %. On peut même attribuer un facteur de confiance à
une règle. Étant donné que le but des facteurs de confiance est d’évaluer le degré de
certitude ou la probabilité des conclusions d’un système, il nous faut des règles de calcul qui
permettent de combiner :

• les facteurs de confiance des conditions d’une règle;
• ce résultat avec le facteur de confiance de la règle elle-même pour en déduire le facteur

de confiance de la conclusion de la règle;
• entre eux les facteurs de confiance d’une conclusion déductibles de plusieurs règles.

29

Plusieurs méthodes de calcul des facteurs de confiance sont envisageables. La méthode la
plus répandue met en pratique les règles suivantes :

a) Le facteur de confiance de la partie condition d’une règle est le plus petit (minimum) de
ceux accordés aux conditions (reliées par l’opérateur et) qui la composent.

b) Si plusieurs conditions indépendantes (reliées par l’opérateur ou) conduisent à la même
conclusion, le facteur de confiance de celle-ci sera le plus élevé (maximum) des facteurs
de confiance des conditions.

La figure 10 montre comment on applique les deux premières règles en combinant des
facteurs de confiance. Dans cette figure, « cl » désigne une conclusion et « cd » une
condition.

Figure 10 Combinaison des facteurs de confiance.

Appliquons ces critères à la base de règles Économie de la section 4. On a interrogé un
expert en conjoncture économique pour définir les facteurs de confiance associés à chacun
des quatre faits du niveau inférieur de l’arbre représentant cette base. Voyons maintenant, à
la figure 11, ce que nous apprendrait cette base de règles en l’interrogeant sur les chances
que les indices boursiers s’affaissent (IB = -).

Un moteur d’inférence en chaînage arrière applique d’abord la règle 2, ce qui l’amène à
vérifier la tendance des taux d’intérêt (TI). La règle 3 est alors appliquée pour vérifier la
tendance du taux de change ($). La condition de la règle 3 nous indique qu’il est certain à
50 % que le taux de change baisse ($ = -). On en conclut qu’il y a 50 % des chances que les
taux d’intérêt augmentent (TI = · +). Il y a une autre façon de démontrer ce fait (TI= +). En
appliquant la règle 5 dont les conditions TE = + et MM = - ont des facteurs de confiance de
0,8 et de 0,7 respectivement. On prend le minimum de ces deux facteurs, c’est-à-dire 0,7.
Dans ce cas, on arrive à la conclusion que TI= + devrait survenir avec une probabilité de
70 %.

30

Figure 11 Les connaissances incertaines de. la base Économie.

Le fait TI = + est vérifié de deux façons différentes : par l’appli cation de la règle 3 ou de la
règle 5. On retient le plus élevé des facteurs de confiance de la conclusion déduite : 0,7, puis
on applique la règle 2. Cela nous permet de conclure que l’indice boursier va diminuer (lB =)
avec un facteur de confiance de 0,7. Autrement dit, le système prévoit que l’indice boursier a
70 % des chances de diminuer.

Il existe beaucoup d’autres types de moteurs d’inférence permet tant de calculer la
vraisemblance d’une conclusion. On peut attribuer, en particulier, un facteur de confiance à
une règle. Dans le cas précédent, nous avons fait comme si chaque règle était certaine à
100 %, mais ce n’est pas toujours le cas.

Dans les systèmes où on attribue des facteurs de confiance aux règles et aux faits, le facteur
de confiance de la conclusion d’une règle est le produit du facteur de confiance de sa partie
condition multiplié par celui de la règle elle-même. Ainsi, dans l’exemple précédent, si la
règle 1 a un facteur de confiance de 0,8, la conclusion lB = + a un facteur de confiance de 0,8
* 0,5 = 0,4. De cette manière, le facteur de confiance d’une règle peut atténuer celui de sa
partie condition.

31

Conclusion
La réalisation des systèmes à base de connaissances est un pas vers l’objectif fondamental
des travaux en intelligence artificielle : la mise au point de machines capables d’un
comportement « intelligent ». De ce point de vue, on peut affirmer que les SBC, notamment
les systèmes à base de règles, possèdent deux attributs caractéristiques d’un comportement
intelligent :

• un mécanisme de raisonnement, le moteur d’inférence,
• une capacité d’explication de leur fonctionnement.

Une autre particularité des SBC est le haut degré de généralité des données qu’ils traitent.
Celles-ci sont un amalgame de données factuelles (des faits) comme celles traitées par les
systèmes « classiques » de gestion des données, mais également des connaissances
déclaratives correspondant aux instructions de branchement dans un programme (des règles)
qui décrivent la manière d’utiliser les connaissances factuelles. D’autre part, les systèmes à
base de connaissances sont caractérisés par l’indépendance des faits et des règles par
rapport aux programmes qui les traitent. Nous avons vu que les systèmes à base de règles
sont un des derniers maillons d’une évolution des familles de logiciels marquée par la
séparation progressive des données et des programmes.

L’opération d’un système à base de règles prend la forme d’un dialogue système-usager. Le
système pose des questions et l’usager répond ou demande des explications sur l’état du
processus de déduction. Pour satisfaire les requêtes de l’usager, le moteur d’inférence
effectue deux opérations :

• Il établit des liens entre les connaissances dans la base de règles et les données d’un
problème dans la base de faits. Par une sélection et une application des règles, il déduit
des conclusions ou vérifie des faits.

• Il gère la base de faits comme une pile de données. Cela lui permet de conserver une
trace de ses actions et ainsi, d’expliquer son fonctionnement.

Le fonctionnement du moteur d’inférence est contrôlé par la séquence de base suivante :
sélection des règles applicables, choix d’une règle à appliquer et application d’une règle. On
arrive à deux modes d’inférence distincts en adaptant, selon les besoins, les procédures de
sélection et de choix des règles :

• en chaînage avant, lorsque nous connaissons un ensemble de faits desquels on voudrait
déduire des conséquences;

• en chaînage arrière, lorsque nous désirons vérifier dans quelles conditions tel fait pourrait
survenir.

Il existe des variantes de ces deux modes d’inférence de base qui optimisent le
fonctionnement du MI, c’est-à-dire qui le rendent plus performant. La plupart des optimisations
reposent sur une structuration des règles pour former des regroupements ou sur la
détermination de priorité d’application des règles.

L’étape suivante sera d’apprendre et d’appliquer une méthodologie d’acquisition et
d’implantation de connaissances en vue de les exploiter avec un système à base de règles.

32

À retenir

1. L’émergence des systèmes à base de connaissances (SBC) est caractérisée par la
séparation progressive des données et des programmes dans un environnement
informatique. On intègre la logique des programmes aux bases de connaissances
auxquelles accèdent des programmes de plus haut niveau, les moteurs d’inférence.

2. On opère un SBC par dialogue : le SBC pose des questions et l’usager répond. Les
réponses permettent ainsi au SBC d’avancer dans son processus de recherche de
solutions du problème soumis par l’usager.

3. Un SBC est constitué d’un mécanisme d’inférence (moteur d’inférence), d’une base de
connaissances, d’une base de faits et d’inter faces avec les experts et les usagers.

4. Un SBC reproduit la démarche d’un expert. Il déduit en exploitant le contenu d’une base
de connaissances et en interrogeant l’usager. Il communique ses conclusions à l’usager.

5. Le parcours d’une base de règles par un moteur d’inférence est analogue à celui d’un
réseau routier par un << navigateur». Les mécanismes d’inférence basés sur des règles
sont construits sur la séquence des procédures suivantes : sélectionner les règles
applicables, choisir une règle à appliquer et appliquer une règle.

6. On reconnaît deux modes d’inférence de base : le chainage arrière et le chaînage avant.
7. Le chaînage avant est un mode d’inférence qui permet de déduire des conclusions à partir

de faits considérés vrais par hypothèse.
8. Le chaînage arrière est un mode d’inférence qui permet de retrouver les faits requis pour

qu’une conclusion soit réalisée.
9. Un SBC conserve en mémoire les opérations qu’il effectue. Cela lui permet de fournir des

indications sur son propre fonctionnement. Ainsi, il peut justifier une question, faire
connaître le cheminement logique qui l’a conduit à une conclusion et faire un sommaire de
ses déductions. Il peut même explorer des éventualités.

10. On peut optimiser les algorithmes d’inférence de base pour les rendre plus performants
par divers moyens : classes de règles, métarègles, coefficients de priorités des règles,
fonctions heuristiques d’évaluations, facteurs de confiance.

	Fonctionnement d’un système à base de règles0F
	Par Lucien Roy
	Introduction
	1. Émergence des systèmes à base de connaissances
	2. Structure d’un système à base de règles
	2.1 Schéma fonctionnel
	2.2 Fonctions de chaque composante
	Les connaissances et les faits
	La base de règles
	La mémoire de travail

	Le moteur d’inférence (Ml)
	Les interfaces
	L’interface expert
	L’interface usager

	3. Modes d’opération d’un système à base de règles
	Déroulement d’une session de travail

	4. Logique de fonctionnement du moteur d’inférence
	4.1 Navigation dans un réseau
	4.2 Aperçu du fonctionnement d’un moteur d’inférence
	4.3 Chaînage avant2F
	Simulation avec la base Économie
	Étape 1
	Étape 2
	Étape 3
	Algorithme

	4.4 Chaînage arrière3F
	Simulation avec la base Économie
	Étape 1
	Étape 2
	Étape 3
	Algorithme

	4.5 Variantes des mécanismes d’inférence de base
	Chaînage mixte
	Recherche en largeur ou en profondeur

	5. Évaluation des mécanismes
	5.1 Observations sur le fonctionnement d’un moteur d’inférence
	Le dialogue SBC-usager est intégré au mécanisme d’inférence
	La base de connaissances évolue lors d’une session de travail
	Le moteur d’inférence est autonome mais il peut solliciter de l’aide
	Les connaissances sont indépendantes du moteur d’inférence
	La base des faits alimente le module d’explication

	5.2 Comparaison et synthèse des méthodes d’inférence

	6. Optimisation de la performance d’un moteur d’inférence
	6.1 Structuration des connaissances dans une base de règles
	6.2 Priorités d’application des règles
	6.3 Métarègles
	6.4 Heuristiques

	7. Traitement des connaissances incertaines
	Conclusion
	À retenir

